We described here a sensitive and highly selective high-performance liquid chromatography (HPLC) method for determination of vitamin K1 and vitamins K2 (MK-4 to MK-10) in fermented milk and fresh cheese products. The different steps of the method have been optimized to be able to quantify vitamin K in small amounts (until 0.05 µg/100 g) in dairy products. Chromatography was performed by reverse phase separation on a RP-18e column followed by a post-column zinc reduction to facilitate fluorescent detection. The chromatography conditions were optimized to improve vitamin K resolution. A study was performed by two laboratories (DANONE Research Analytical Support and AQUANAL – Laboratoire Aquitaine Analyses). The results were statistically analyzed and confirm the method validity.

We described here a sensitive and highly selective high-performance liquid chromatography (HPLC) method for determination of vitamin K1 and vitamins K2 (MK-4 to MK-10) in fermented milk and fresh cheese products. The different steps of the method have been optimized to be able to quantify vitamin K in small amounts (until 0.05 µg/100 g) in dairy products. Chromatography was performed by reverse phase separation on a RP-18e column followed by a post-column zinc reduction to facilitate fluorescent detection. The chromatography conditions were optimized to improve vitamin K resolution. A study was performed by two laboratories (DANONE Research Analytical Support and AQUANAL – Laboratoire Aquitaine Analyses). The results were statistically analyzed and confirm the method validity.

INTRODUCTION

At least two naturally-occurring forms of vitamin K have been identified:
- vitamin K1 (phylloquinone) widely distributed in green leafy vegetables and plant oils,
- vitamin K2 (menaquinones) derived from bacteria and animals.

Menaquinones comprise a family of molecules distinguished from phylloquinone by unsaturated side-chains of isoprenoids units varying in length from 1 to 14 repeats.

PROTOCOL

Phylloquinones and menaquinones are extracted by enzymatic treatment using a lipase solution adapted to the quantity of dairy product analyzed. Then two steps of solvent extraction (alcoholic reagent and hexane) are needed before quantification with reverse-phase HPLC and fluorescent detection after post-column reduction with metallic zinc.

RESULTS

Both laboratories performed independent replicate analyses of fermented milk. A study on supplemented fresh cheese samples was carried out by AQUANAL and demonstrated a recovery about 100%. As only 3 standards of the 8 vitamins K detected are commercially available (K1, MK4 and MK7), the concentration is expressed in µg/100g equivalent MK4 for MK4 to MK6 and equivalent MK7 for MK7 to MK10. The end result is expressed as the sum of all these molecules.

CONCLUSION

The proposed HPLC method for determining vitamin K in dairy products is:
- highly selective
- reproducible
- reliable
- accurate